Российский аэрозольный 3D-принтер позволит заменить фотолитографы в электронике
Фото. Сотрудники лаборатории технологий 3D-печати функциональных микроструктур (слева направо) Павел Арсенов, Булат Маснавиев, Алексей Ефимов и Денис Корнюшин около экспериментального образца аэрозольного 3D-принтера с лазерным ассистированием
Российский аэрозольный 3D-принтер позволит создавать электронные платы на пластиковых поверхностях любой формы с помощью направленного потока наночастиц. В результате солнечные батареи можно будет печатать прямо на крышах автомобилей, а такие элементы мобильных телефонов, как принимающие и передающие антенны, начнут встраивать в их корпуса, уменьшив габариты устройств. Новую технологию можно будет использовать и для создания токопроводящей основы гибких экранов, что сделает их более экономичными. Уже создан экспериментальный прототип принтера, а его промышленная версия может появиться в ближайшие годы.
В отличие от традиционных методов формирования электронных изделий, предполагающих использование большего количества технологических операций с удалением значительной части материалов, разработанное оборудование и технология предполагают быстрое изготовление изделий методом послойного нанесения материала в форме наночастиц с его последующей монолитизацией, используя локальное лазерное спекание наночастиц на подложке.
Новым является и использование «сухих» химически чистых наночастиц размером 2-20 нм. Их получают в импульсно-периодическом газовом разряде. Использование «сухих» химически чистых наночастиц размером 2-20 нм за счет размерного эффекта позволяет осуществлять процесс локального лазерного спекания при пониженных температурах и, таким образом, формировать принципиально новые электронные 3D-устройства на термочувствительных гибких полимерных подложках.
Алексей Ефимов, ведущий научный сотрудник лаборатории технологий 3D-печати функциональных микроструктур МФТИ, прокомментировал: «Уникальность разработанной нами технологии аэрозольной 3D-печати потоками наночастиц с локальным лазерным спеканием заключается в сочетании высокой разрешающей способности до 25 мкм, высокой массовой производительности до 300 мг/ч и низкой себестоимости формирования функциональных 3D-микроструктур, что будет определять дальнейший рост ее популярности».
В сравнении с существующими подходами аддитивного изготовления микроструктур, предполагающими использование печатного оборудования и наночернил в качестве источников наночастиц, разработанная технология аэрозольной 3D-печати наночастицами с лазерным ассистированием имеет целый ряд преимуществ. Она обеспечивает более высокие значения удельной электрической проводимости и механической прочности микроструктур, так как «сухие» химически чистые наночастицы, полученные в импульсно-периодическом газовом разряде, не содержат на поверхности остатков растворителя и поверхностно-активных веществ. Важным преимуществом является и сокращение количества этапов изготовления функциональных микроструктур, поскольку не требуется готовить наночернила и затем сушить их перед лазерным спеканием. Получение, локальная доставка и локальное лазерное спекание наночастиц осуществляются одновременно. Пользователи имеют возможность гибко варьировать типы материалов (металлы, полупроводники и диэлектрики), размер, форму и плотности укладки наночастиц за счет изменения материала электродов и режимов получения наночастиц в импульсно-периодическом газовом разряде.
Разработанная технология и оборудование могут быть использованы для производства широкого спектра функциональных микроразмерных компонентов и изделий для электроники, фотоники, альтернативной энергетики, медицинской и аэрокосмической техники. В частности, для изготовления микроантенн, пространственных 3D-межсоединений, микронагревателей, активных (транзистор, диод) и пассивных (резистор, конденсатор) электронных компонентов, светоизлучающих устройств (гибкие дисплеи, ячейки OLED-матриц), элементов солнечных батарей и различных сенсоров: газовых, био-, температурных и других.
Фото. Блок газоразрядной генерации аэрозольных наночастиц
Исследования выполнены совместно с АО «НИИ электронного специального технологического оборудования» в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы».
Кстати, а вы знали, что на «Сделано у нас» статьи публикуют посетители, такие же как и вы? И никакой премодерации, согласований и разрешений! Любой может добавить новость. А лучшие попадут в наш Телеграм @sdelanounas_ru. Подробнее о том как работает наш сайт здесь👈
Другие публикации по теме
В МФТИ впервые запустили отечественный 12-кубитный квантовый процессор на базе сверхпроводников
Специалисты МФТИ впервые использовали отечественный 12-кубитный квантовый п...ровать рак молочной железы», — говорится в сообщении.Создано первое скоростное компактное устройство для квантового процессора
Переключатель между пространственными каналами на чипе квантового проц...чая мощность — -80 дБм. Об этом сообщила пресс-служба вуза.В ОЭЗ «Орёл» открылся завод по производству телематического оборудования
Новый завод ООО «Три Точки Мануфактуринг» по производ...тавил 162 млн рублей. Сейчас на предприятии трудится около 60 рабочих.
Поделись позитивом в своих соцсетях
04.10.2119:35:45
04.10.2122:59:48
04.10.2123:54:23
05.10.2107:59:37
05.10.2112:41:38
05.10.2113:38:15
05.10.2117:23:12
05.10.2113:39:24