Российские ученые получили магнитный нанопорошок для 6G-технологий
Материаловеды из МГУ и МФТИ разработали быстрый метод получения эпсилон-оксида железа и продемонстрировали его перспективность для применения в устройствах связи нового поколения. Выдающиеся магнитные свойства делают его одним из самых желанных материалов, например для устройств связи грядущего поколения 6G и для высоконадежных приборов магнитной записи. Статью ученых можно прочитать в журнале Королевского химического сообщества Journal of Materials Chemistry C.
Оксид железа (III) — один из самых распрострааненных оксидов на планете. У форм оксида железа (III) существуют экзотические модификации: эпсилон-, бета-, дзета- и даже аморфная. Наиболее привлекательной фазой для ученых является именно эпсилон-оксид железа. Эта модификация обладает экстремально высокой коэрцитивной силой (способностью материала сопротивляться внешнему магнитному полю). Сила достигает 20 кЭ при комнатной температуре, что сравнимо с параметрами магнитов на основе дорогостоящих редкоземельных элементов. Материал также поглощает электромагнитное излучение в субтерагерцовом диапазоне частот (100-300 ГГц) за счет эффекта естественного ферромагнитного резонанса.Частота такого резонанса является одним из критериев для применения материалов в устройствах беспроводной связи — 4G-стандарт использует мегагерцы, а 5G — десятки гигагерц. Субтерагерцовый диапазон планируется использовать в качестве рабочего в беспроводных технологиях шестого поколения (6G).
Полученный материал можно применять для производства преобразующих или поглощающих устройств на данных частотах. Из нанопорошка можно будет делать краски, поглощающие электромагнитные волны, и таким образом экранировать помещения от посторонних сигналов и защищать сигнал от перехвата извне.
Эпсилон-оксид железа — чрезвычайно редкая и трудная в получении форма окиси железа. На сегодня его получают в очень малых количествах, причем сам процесс получения занимает до месяца. Конечно, в такой ситуации речь о широком применении не идет. Авторы исследования разработали методику ускоренного синтеза эпсилон-оксида железа, которая позволяет сократить время синтеза до одного дня (то есть проводить полный цикл более чем в 30 раз быстрее!) и увеличить количество получаемого продукта. Методика проста в воспроизведении, дешева и может быть легко внедрена в промышленность, а необходимые для проведения синтеза материалы — железо и кремний — являются одними из самых распространенных на Земле элементов.
«Материалы со столь высокими частотами ферромагнитного резонанса имеют огромный потенциал для практических применений. Сегодня происходит бурное развитие терагерцовых технологий: это Интернет вещей, сверхбыстрая связь, научные приборы более узкого применения, медицинские технологии нового поколения. Столь нашумевший в последний год стандарт связи 5G оперирует частотами в десятки гигагерц, мы же с нашими материалами открываем перспективы для перехода к существенно более высоким частотам (сотни гигагерц), то есть имеем дело уже со стандартами 6G и выше. Теперь дело за инженерами, мы с удовольствием делимся с ними полученной информацией и с нетерпением ждем возможности подержать в руках свой 6G-телефон», — отмечает Людмила Алябьева, старший научный сотрудник лаборатории терагерцовой спектроскопии МФТИ, где проводились терагерцовые исследования.
Кстати, а вы знали, что на «Сделано у нас» статьи публикуют посетители, такие же как и вы? И никакой премодерации, согласований и разрешений! Любой может добавить новость. А лучшие попадут в наш Телеграм @sdelanounas_ru. Подробнее о том как работает наш сайт здесь👈
Другие публикации по теме
Учёные МФТИ и МГУ разработали метод создания наночастиц для лечения рака
Российские учёные разработали метод создания магнитных наночастиц из к... новые возможности для точного контроля размеров и свойств наночастиц.Hовый суперкомпьютер МГУ производительностью 400 петафлопс
superkomputerВ Московском Государственном Университете (МГУ) им. ...акже поиском новых методов защиты систем на основе технологий ИИ.Научная группа химического факультета МГУ создала рентгеновский спектрометр LomonosovXAS
Научная группа химического факультета МГУ совместно с Курчатовским инс...ьно упрощая исследования в области радиохимии и смежных областях.
Поделись позитивом в своих соцсетях