Изобретение МГУ для предотвращения наводнения от ледовых заторов
Как избежать катастроф от ежегодного разлива рек при весенних паводках.
Каждый год в начале весны главными новостями всегда являлись сообщения о наводнениях и тяжелейших последствиях для целых регионов, аж с выездом на место первых лиц государства. До появления коронавируса. Но ситуация этого года с наводнениями ничем не отличается от предыдущих, просто информации о подтоплениях стало гораздо меньше. Подъём паводковой воды обусловлен образованием ледовых заторов в руслах рек и при ледоходах заторы создают крупногабаритные обломки ледовых полей при их взаимодействии с береговым припайным льдом, с опорами мостовых переходов и гидротехническими сооружениями, при сужении русла ледохода, при изменения направления течения в излучинах рек,
Такой работой должен заниматься МЧС, но специалисты МЧС взрывают лишь ледовые поля вблизи мостовых переходов, а сами заторы остаются не тронутыми, т.к. закладка ВВ — это опасный вид работ и заложить в колышущую гору льда ледового затора сотни лунок для ВВ — на это взрывники не идут. Проще, как уже бывало, хоть и запоздало, с разрешения самых высших чинов, вызвать фронтовую авиацию и разбомбить ледовый затор. Поэтому количество ежегодных заторов в общем числе не уменьшаются и на величину ущерба от паводковых вод деятельность МЧС не сказывается. Наоборот — может появится повод для запроса дополнительного финансирования для устранения последствий паводка.
Поскольку, каких-либо тенденций для изменения сложившейся практики по борьбе с наводнениями от паводковых вод не предвидится, то решает эту проблему с использование недавнего патента МГУ им. М.В. Ломоносова № 2629569 «Способ разрушения ледяного покрова». Способ основан на эффектах изменении энтропии, детонации и конденсации продуктов водородно-кислородной реакции и оптимальным образом подходить для наиболее полного использования таких слабых сторон льда, как хрупкость и способность к трещинообразованию от детонационного (ударного) воздействия и низкую сопротивляемость разрушению от приложенных знакопеременных нормальных к поверхности льда сил. Такие условия можно создать, используя подледную или надледную объемную детонацию гремучего газа, при этом, такой способ разрушения льда обладает рядом неоспоримых преимуществ, по сравнению с существующими способами разрушения:
— для дробления льда в любых водных бассейнах применяется абсолютно экологически чистая технология, так как в результате реакции гремучего газа получается только чистая вода,
— для дробления применяется объемная детонация гремучего газа, в отличие от применяемых на сегодня точечных взрывов в теле льда экологически грязных твердых взрывчатых веществ (ВВ),
— для создания определенного объема гремучего газа применяются экологически чистые, биоразлагаемые, самораскатывающиеся подо льдом или на льду пластиковые рукава, раздувающие под давлением газа, и с диаметром от долей метра до нескольких метров, в зависимости от условий применения,
— детонация гремучего газа является экзотермической реакцией с выделением на моль вещества энергии больше, чем многие твердые и иные ВВ. Для наглядной
Демонстрации этого факта образовательный телеканал «Da Vinci Kids» провел такой эксперимент: — На газон были опрокинуты вверх дном 3 стальные бочки в один баррель без крышки. Под каждой бочкой заложили в отдельности по 2 грамма пороха, бензина и гремучего газа и взорвали электрокабелем. От взрыва пороха бочка чуть вздрогнула, от реакции бензина бочка приподнялась на полметра, а от гремучего газа — взлетела на десяток метров!
— после окончания реакции и выброса части газов в атмосферу, в подледном объеме детонировавшего гремучего газа, давление резко падает ниже атмосферного, в следствии уменьшения энтропии, а также конденсации образовавшей воды, и под влиянием силы тяжести и атмосферного давления в образовавшую разреженную полость обрушивается расколотый лед, полностью лишенный способности оказывать давление в миллионы тонн из-за потери монолитности. Такого характера не носит ни одна реакция других детонирующих газовых смесей и твердых ВВ, энтропия которых увеличивается и в объеме детонации после реакции и выброса части газов в атмосферу образуется высокое осмотическое давление, — выше атмосферного, что уменьшает вероятность возникновения многократных знакопеременных напряжений в теле льда, как от самого взрыва, так и отхлынувшей воды,
— детонирующую смесь гремучего газа можно получить на месте применения электролизом любой воды в неограниченном объеме, в то время, как для дробления льда взрывом надо завозить разнообразные ВВ, опасные в обращении, транспортировке и хранении (известен случай гибели в воздухе подрывников и членов экипажа вертолета при производстве таких работ),
— экономически выгодно произвести на месте потребления гремучий газ, в пересчете на 1 Мдж выделяемой энергии, чем применение любых других ВВ с учетом стоимости их производства, транспортировки, хранения и применения, особенно с использование бомб фронтовой авиации, тем более, что завозимые ВВ всегда ограничены по объему или весу, в отличие от гремучего газа, который можно получит в неограниченном объеме, с использованием мобильного электролизера воды и переносного электрогенератора мощностью в несколько кВт,
— дробление льда гремучим газом гораздо безопасней и производительней, чем применяемые на данный момент способы дробления с использованием твердых ВВ, устанавливаемые в теле льда с помощью ручного труда и выхода людей на лед. Из-за имплозивного характера реакции гремучего газа на конечной стадии, дробления льда гремучим газом можно производить даже в непосредственной близости от защищаемых объектов, например, вплотную у быков мостовых опор и под самым мостовым переходом, а эти самые проблемные места при ледоходах, что не сделаешь другими ВВ, которые выбрасывают глыбы льда на сотни метров вверх.
Способ на реках осуществляется следующим образом: Мобильной бригадой, а на судах — командой судна, прибывшей на место устранения угрозы, предварительно вырабатывается гремучий газ на месте применения в нужном объеме, в зависимости от производительности электролизера и потребного количества, который накапливается в газонепроницаемых тканевых мобильных емкостях под давлением в несколько атмосфер, причем газ может хранится и в виде чистого кислорода и водорода. В момент использования гремучий газ или его компоненты подается по гибким морозостойким шлангам в скатанный газонепроницаемый, биоразлагаемый пластиковый рукав. Под давлением подаваемого газа рукав раскатывается в нужном направлении на поверхности льда, а при подледном использовании — по ходу течения воды, через выпиленную лунку выше по течению реки. При стоячей воде рукав подо льдом можно раскатывать в любом направлении, так же как и на льду. На месте входа в рукав гибкие шланги снабжены обратными клапанами и там же может находится устройство инициации детонации, представляющий собой искровой разрядник, нагревательный элемент с электрокабелем
— электролиз воды является хорошо изученным процессом и разница между расходом энергии для получения гремучего газа и выделением энергии при реакции детонации полученного гремучего газа составляет не более 15%, что в разы дешевле по энерговыделению, по сравнению с другими ВВ с учетом производства, хранения и транспортировки их к месту применения,
— гремучий газ можно производить в любом месте и в любое время с применением существующего простого и надежного оборудования для выполнения огневых (сварочных) работ водородно-кислородной горелкой (в интернете масса предложений на такие устройства), водородных генераторов, малогабаритных электролизеров воды, но со временем нужно наладить выпуск и специализированного оборудования, что будет хорошим подспорьем для предприятий ВПК для которых откроется обширный рынок по выпуску новой и востребованной продукции,
— не найдется ни одного детонирующего твердого, жидкого или газообразного ВВ столь общедоступного, неограниченно по сырью, безопасного при производстве, хранении и использовании (производишь лишь в момент использования), обладающего высокой экзотермичностью и что очень важно, — редкой и уникальной способностью уменьшения энтропии системы после окончания реакции, как гремучий газ. Энтропия при детонации гремучего газа уменьшается, ибо из трех первоначальных молекул: — двух молекул водорода и одной кислорода образуется две молекулы воды. Реакция протекает по такой схеме: 2Н2 + О2 = 2Н2О + энергия. Отсюда видно, что отношение количества молекул в полости детонации гремучего газа после реакции и до реакции соотносятся, как 2/3 и потому объем занимаемый структурными единицами
Абдуллаев Шамиль Бабугаджиевич.
Кстати, а вы знали, что на «Сделано у нас» статьи публикуют посетители, такие же как и вы? И никакой премодерации, согласований и разрешений! Любой может добавить новость. А лучшие попадут в наш Телеграм @sdelanounas_ru. Подробнее о том как работает наш сайт здесь👈
Другие публикации по теме
Hовый суперкомпьютер МГУ производительностью 400 петафлопс
superkomputerВ Московском Государственном Университете (МГУ) им. ...акже поиском новых методов защиты систем на основе технологий ИИ.Научная группа химического факультета МГУ создала рентгеновский спектрометр LomonosovXAS
Научная группа химического факультета МГУ совместно с Курчатовским инс...ьно упрощая исследования в области радиохимии и смежных областях.В Чечне официально открыли филиал МГУ имени Ломоносова
В пятницу, 17 ноября, в Грозном состоялось официальное открытие ф...еподаватели и учеными профильных факультетов Московского университета.
Поделись позитивом в своих соцсетях
31.05.2009:09:47
31.05.2013:56:10